SYLLABUS PHYSICS PRACTICAL FOR CLASS XI (CBSE)

Total Periods: 60

- The record to be submitted by the students, at the time of their annual examination, has to include:
- Record of at least 12 Experiments (with 6 from each section) to be performed by the students.
- Record of at least 6 Activities (with 3 each from section A and section B) to be performed by the students.
- Report of the project to be carried out by the students.

Evaluation Scheme

Time allowed : 3 Hrs.		Max. Marks: 30
Two experiments one from each section		7+7 Marks
Practical record (experiments & activities)		5 Marks
One activity from any section		3 Marks
Investigatory Project		3 Marks
Www on experiments, activities and Project		5 Marks
	Total	30 Marks

SECTION – A EXPERIMENTS

- To measure diameter of a small spherical/cylindrical body and to measure internal diameter and depth of a given beaker/calorimeter using Vernier Callipers and hence find its volume.
- To measure diameter of a given wire and thickness of a given sheet using screw gauge.
- To determine volume of an irregular lamina using screw gauge.
- To determine radius of curvature of a given spherical surface by a spherometer.
- To determine the mass of two different objects using a beam balance.
- To find the weight of a given body using parallelogram law of vectors.
- Using a simple pendulum, plot its L– τ^2 graph and use it to find the effective length of second's pendulum.
- study variation of time period of simple pendulum of a given length by taking bobs of same size but descent masses and interpret the result.
- the relationship between force of limiting friction and normal reaction and to find the coefficient of between a block and a horizontal surface.
- the downward force, along an inclined plane, acting on a roller due to gravitational pull of the earth and study its relationship with the angle of inclination (θ) by plotting graph between force and $\sin\theta$.

ACTIVITIES

(For the purpose of demonstration only)

- To make a paper scale of given least count, e.g., 0.2 cm, 0.5 cm.
- To determine mass of a given body using a metre scale by principle of moments.
- To plot a graph for a given set of data, with proper choice of scales and error bars.
- To measure the force of limiting friction for rolling of a roller on a horizontal plane.
- To study the variation in range of a projectile with angle of projection.
- the conservation of energy of a ball rolling down on an inclined plane (using a double inclined plane).
 - dissipation of energy of a simple pendulum by plotting a graph between square of amplitude and time.

SECTION - B EXPERIMENTS

- To determine Young's modulus of elasticity of the material of a given wire.
- To find the force constant of a helical spring by plotting a graph between load and extension.
- To study the variation in volume with pressure for a sample of air at constant temperature by plotting gr between P and V, and between P and I/V.
- To determine the surface tension of water by capillary rise method.
- To determine the coefficient of viscosity of a given viscous liquid by measuring terminal velocity of a §
- To study the relationship between the temperature of a hot body and time by plotting a cooling curve.
- To determine specific heat capacity of a given solid by method of mixtures.
- To study the relation between frequency and length of a given wire under constant tension using sonom
- To study the relation between the length of a given wire and tension for constant frequency using sonom 10. To find the speed of sound in air at room temperature using a resonance tube by two resonance position

(For the purpose of demonstration only)

- To observe change of state and plot a cooling curve for molten wax.
- To observe and explain the effect of heating on a bi-metallic strip.
- To note the change in level of liquid in a container on heating and interpret the observations.
- To study the effect of detergent on surface tension of water by observing capillary rise.
- To study the factors affecting the rate of loss of heat of a liquid.
- To study the effect of load on depression of a suitably clamped metre scale loaded at (i) its end (ii) in
- To observe the decrease in pressure with increase in velocity of a fluid.

