SYLLABUS

BCA-16-304 COMPUTER ORIENTED NUMERICAL METHODS

B.C.A. Semester-III

P.U.

L T P Cr

6 1 m - 120 3 supress of month betteles vilinteres no

External marks: 65

Internal Marks: 10

Time Duration: 3 Hours

Number of Lectures: 60

Objective: To teach the students the essential techniques of Numerical Methods. After completing this course students will be able to solve various Scientific and Engineering fields problems.

Note:

- (i) The Question paper will consist of Four Sections.
- (ii) Examiner will set total of Nine questions comprising Two questions from each Section and One compulsory question of short answer type covering whole syllabus.
- (iii) The students are required to attempt one question from each Section and the Compulsory question.
- (iv) All questions carry equal marks unless specified.
- (v) The student can use only Non-programmable & Non-storage type of Calculators.
- (vi) Log tables are allowed. Students may be provided the same for computation.

UNIT-I

Data Representation and Computer Arithmetic: Introduction, Concept of Exact and Appropriate Numbers, Concept of Significant digits, Representation of Numbers in Memory, Storage of Integer Numbers: Signed Representation, 1's Complement Representation, 2's Complement Representation, Floating Point Numbers and their storage, Floating Point Arithmetic, Normalization and their consequences, Errors, Measures of Accuracy; Absolute Error, Relative Error and Percentage Error, Error types: Data Errors, Truncation Errors, Round-Off Errors, Computational Errors, Rules, Relationship between Relative Error and Significant digits and Error Propagation: Error Propagation in Addition Operation, Subtraction Operation, Multiplication Operation and Division Operation.

UNIT-II

Solution of Non Linear Equations: Introduction, Types of Non-Linear Equations: Polynomial Equations, Transcendental Equations, Methods of Finding Solutions of Non-Linear equation: Direct Method, Iterative Method.

Iterative Methods: Bisection Method, False-Position Method, Secant Method, Newton Raphson Methods Zeros of a polynomial using Birge – Vieta Method, Convergence of Iterative Methods: Convergence of Bisection Method, Convergence of False Position Method, Convergence of Newton-Raphson Method, Convergence of Secant Method, Comparison between Iterative Methods.

Simultaneous Linear Equations: Solution of Simultaneous Linear Equations using Direct and Iterative Methods: Direct Methods: Gauss — Elimination Method, Gauss-Jordan Method, Concept of Pivoting, Iterative Method: Gauss-Seidel Method.

UNIT-III lasinamula

Interpolation: Introduction, Lagrange Interpolation, Inverse Interpolation, Finite differences: Forward Differences, Backward Differences, Divided Differences, Difference Tables: Forward Difference Table, Backward Difference Table, Divided Difference Table, observations regarding Difference Tables, Newton's Method of Interpolation: Newton's Forward Difference Interpolation Formula, Newton's Backward Difference Interpolation Formula, Newton's Divided Difference Interpolation Formula.

Numerical Integration : Introduction, Newton-Cotes Integration Formulae : Traperoidal Rule, Simpson's 1/3rd Rule, Simpson's 3/8th Rule.

U.7.1 Fixed Point Kepresentation of VI-TINU

Approximation : Approximation of functions : Taylor Series Representation, Chebyshev Polynomial.

Solution of Ordinary Differential Equations : Euler's Method, Runga-Kutta Method : 2^{nd} order & 4^{th} order, Predictor Corrector Methods : Modified Euler's Method.